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Optical breathers in anisotropic media
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~Received 25 March 2003; revised manuscript received 21 August 2003; published 27 February 2004!

Anisotropic crystals are shown to have three different mechanisms of the formation of breathers depending
on the direction of the wave propagation and on the symmetry of the medium. Explicit analytic expressions for
the parameters of breathers and the effective nonlinear susceptibilities for extraordinary waves are obtained. All
uniaxial crystals with quadratic susceptibilities can be divided into three different groups, according to the
crystal classes. Each group is characterized by a universal structure of the breathers zones. The structure of the
breathers zones of the media with cubic susceptibilities depends neither on the crystal systems~syngonies! nor
on the crystal classes and coincides with the structure of the breathers zones of the crystals with quadratic
susceptibilities and crystal classes 3, 3m, 4, 4mm, 6, 6mm. The initial-value and boundary-value problems are
considered separately.
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I. INTRODUCTION

The propagation of optical waves in a medium is acco
panied by various changes of their shape. The main eff
that change the shape of waves are nonlinearity and dis
sion. The most interesting are those wave processes
which the effects distorting the shape of the wave comp
sate each other exactly and breathers are formed. The
tence of breathers is one of the most interesting and im
tant manifestations of nonlinearity in optical systems. Th
are of particular interest because they have many soliton
properties, but unlike solitons, breathers can be excited
for relatively small areas~intensities! of pulses@1–3#. Deter-
mination of the mechanisms causing the formation of opt
breathers and investigation of their properties in differ
media are among the principal problems of the physics
nonlinear waves.

In the propagation of a pulse in a nonlinear medium
effects of nonlinearity leads to a progressive deformation
the initial pulse profile. The basic sources of the optical n
linearity in dielectrics and semiconductors may be the f
lowing.

~i! Nonresonance nonlinearity. Media possess nonlin
susceptibilities, the most important of which are nonlinea
ties of second~quadratic! and third~cubic! order. There is a
great variety of dielectrics and semiconductors posses
nonresonance nonlinearity. For example, LiNbO3, a-quartz
(SiO2), GaAs, InSb, etc., have quadratic nonresonance n
linearity, but melted quartz, CS2, etc., have cubic nonreso
nance nonlinearity@4–7#. Unlike the coefficient of nonlinea
susceptibility of the second orderdi jk , which is nonzero
only for noncentrosymmetric crystals, the coefficient of no
linear susceptibility of the third orderr i jkl is nonzero in any
media—in cubic crystals~Kerr media! and even in isotropic
media.

~ii ! Resonance nonlinearity. A medium which contains o
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tically active impurities whose excitation frequency is
resonance with the frequency of a nonlinear optical wa
The experimental studies of optical resonance nonlinear
fects in crystals LaF3 :Pr31, YAlO3 :Pr31, Y2O3 :Eu31,
CaWO4:Nd31, on diphenyl with impurity molecules o
piren, in semiconductors PbTe, InSb are described in@8,9#.

On the other hand, in the propagation of an optical pu
in a dispersive medium, its shape will not remain unchang
its width will spread@10–14#. Depending on the nature of th
nonlinearity, the nonresonance or resonance mechanism
the formation of breathers~MFB! is realized. In the case o
nonresonance nonlinearity, which is expressed by mean
quadratic or cubic susceptibilities, its competition with d
persion leads to the formation of nonresonance opt
breathers@1,15#.

A resonance optical nonlinear wave can be formed w
the help of the resonance~McCall-Hahn! mechanism of the
formation of nonlinear waves—i.e., from a nonlinear coh
ent interaction of an optical pulse with resonance impur
atoms in solids, when the conditions of the self-induc
transparency,vT@1 and T!T1,2, have to be fulfilled,
whereT andv are the width and frequency of the pulse, a
T1 and T2 are the longitudinal and transverse relaxati
times of the impurity atoms@16–20#. When the area of the
pulse,Q.p, the solitons are generated, but forQ!1 reso-
nance optical breathers are formed@1–3#. In the experiments
of McCall and Hahn@16# in a crystal of ruby Al2O3 :Cr31

the excitation of resonance soliton was reached when
pulse intensity exceeds some critical value ab
100 W/cm2. The necessary intensity for exciting resonan
optical breathers of small area is significantly smaller th
the intensity necessary for exciting a resonance soliton~2p
pulse!. Therefore, the breathers can be excited more ea
The resonance optical waves of small areaQ!1 are particu-
larly interesting also because they can take part in a w
variety of nonlinear optical phenomena—for instance, in
processes of the formation of optical double breath
@21,22#. Resonance breathers of some equations of nonlin
optics are also highly stable. The breather can be also c

e.
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sidered as a ‘‘zero-area pulse’’ which is experimentally st
ied in Ref.@23# ~see also@24#!.

The coherent interaction of an optical pulse with impur
atoms is characterized by the coefficient of a photon-a
connectionK52pv2n0d0, wheren0 andd0 are the concen-
tration and magnitude of the vector of the electrical dip
moment of the impurity atoms.

For small values ofK, a linear coupling of an optica
pulse with a medium takes place and nonresonance MF
realized. In this case the interaction of a pulse with impu
ties does not contribute to the formation of the nonresona
breathers, except for a renormalization of their parame
@15#.

For large values ofK, a nonlinear interaction of the puls
with impurities is realized, for instance, under the conditi
of a self-induced transparency. In this case resonance MF
realized and resonance breathers are formed@2,3#.

Besides these two basic mechanisms, in some situat
another ‘‘blended’’ MFB can also take place when resona
and nonresonance mechanisms are acting effectively si
taneously. The condition for the realization of these mec
nisms of the formation of optical breathers depends on
quantitiesdi jk ~or r i jkl ) and K and is realized when thes
quantities are equal to each other.

The numerical values of the quantitiesdi jk , r i jkl and K
can vary very strongly depending on the medium. Indeeddi jk
is of order 10220–10224 ~mks units! and can change two to
three orders of magnitude.r i jkl is of order 10231–10234

~mks units! and also changes in a wide region@6,8,25#. For
most noncentrosymmetric crystalsdi jk@r i jkl and usually
third-order nonlinearity can be neglected. The quantityn0
can vary in an interval of order 1014–1019 cm23, while the
quantityd0 is of order 5310221 ~cgs units! in a crystal of a
ruby, but in some semiconductors it is of order of 10217 ~cgs
units! @18#. Because the numerical values of these quanti
can vary very strongly in different media, different solid
will realize different mechanisms of the formation of optic
breathers. But even more interesting for the study and c
parison of different mechanisms is the investigation of th
processes in one and the same crystal. Such a possibil
given if we consider anisotropic uniaxial crystals and inv
tigate processes of the formation of optical breathers for
tical extraordinary waves~Fig. 1!. It is well known that the
properties of extraordinary waves depend on the directio
their propagation and therefore for different directions of
propagation of the waves different relations between
quantities di jk , r i jkl , and K are realized. Hence, if we
change the direction of the propagation of nonlinear wav
different mechanisms of the formation of optical breathers
nonresonance MFB (K!L), resonance MFB (K@L), and
‘‘blended’’ MFB (K5L, where L5di jk in noncentrosym-
metric media andL5r i jkl in Kerr media!—will be realized.

Consequently, in uniaxial media we expect the existe
of certain propagation directions~and zones around them!
along which one of the above-mentioned MFB will be re
ized or not.

Investigation of the breather formation processes and
cific peculiarities of the propagation of nonlinear waves
anisotropic media are also of interest because many l
02660
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crystals are anisotropic@6,7# and isotropic solids can becom
optically anisotropic ones in the presence of a constant e
tric field or under the influence of a deformation@26#. It is
also very important to note that the anisotropic uniaxial cr
tals are used in many modern optical devices. Conseque
the considered problem has rather general character.

The main goal of this work is to investigate the structu
of breathers zones~SBZ’s! and the conditions for realization
of the resonance, nonresonance, and ‘‘blended’’ MFB in d
ferent anisotropic media and to determine the explicit a
lytic expressions for the parameters of breathers and ef
tive nonlinear susceptibilities for the extraordinary waves

II. BASIC EQUATIONS

We consider the mechanisms of the formation of the
tical breathers in the~quadratic or cubic! nonlinear and
second-order ~space and/or time! dispersive optically
uniaxial media containing impurity atoms in the case wh
an optical pulse of widthT!T1,2 and frequencyv@T21,
propagating in the positive direction along theh axis. We
shall consider the optically uniaxial media—trigonal, tetra
onal, and hexagonal crystals with components of the perm
tivity tensor «xx5«yyÞ«zz. In these crystals, one of th
principal axes of the permittivity tensor« i j coincides with
the axis of the symmetry of third, fourth, and sixth orde
respectively. This axis is called the optical axis of t
uniaxial crystal and we assume that this axisO is pointing
along thez axis~Fig 1!. The corresponding principal value o
the tensor« i j is «zz5« uu . The directions of the two othe
principal axes~in the plane perpendicular with thez axis! are
arbitrary and we determine them as«xx5«yy5«' . Without
specifying the physical nature of the dispersive process,
describe the dependence of the permittivity tensor« i j on two
variables—the wave vectorkW and frequencyv of wave~spa-
tially and/or temporally dispersion! @10–12#. There are two
different cases: the regime of normal dispersion when
group-velocity dispersion]2kW /]v2.0 and the regime of
anomalous dispersion when this quantity is negative.

FIG. 1. The direction of the propagation of the extraordina
wave along theh axis making an anglea with the principal optical

O axis of the uniaxial crystal. The vectorsEW , DW , SW , andkW lie in the
yz plane. The opticalO axis and the vector of electrical dipol

moment of the impurity atomsdW 0 are directed along thez axis.
8-2
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In uniaxial media, the electric displacement vectorDW and
the vector of the strength of the electric fieldEW of the pulse
are parallel only ifkW points in the direction of one of the
principal optical axis, but not in general. There are two s
tems of orthogonal vector triplets: (DW , HW , kW ) and (EW , HW , SW ).
We assume without any loss of generality that the vectorsEW ,
DW , andkW and the Poynting vectorSW 5(c/4p)@EW ,HW # lie in the
singleyz plane perpendicular to the strength of the magne
field HW , wherec is the light velocity in vacuum~Fig. 1!.
ThenkW rW5yky1zkz5kh, whereh5z cosa1ysina.

The wave equation for the strength of the electrical fi
EW (h,t) of the optical pulse in uniaxial media has the form

]2EW

]t2
2c2

]2EW

]h2
524pS ]2PW

]t2
2c2graddivPW D , ~1!
cu

ti-

o
.
n
ra
y
as

l
he
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where the polarization of the medium

PW 5E x̂ (1)~x1 ,t1!EW ~h2x1 ,t2t1!dt1dx11P(2W )1P(3W )1PW 8.

~2!

The first-order susceptibility tensor

x i j
(1)5

« i j 21

4p

has two independent nonzero components:x'
(1)5xxx

(1)5xyy
(1)

andx uu
(1)5xzz

(1) .
The components of the second- and third-order nonre

nance nonlinear polarizations have the forms
Pj
(2)5E x2,j~h1 ,h2 ,t1 ,t2 ;a!Ez~h2h1 ,t2t1!Ez~h2h12h2 ,t2t12t2!dt1dt2dh1dh2 ,

Pj
(3)5E r3,j~h1 ,h2 ,h3 ,t1 ,t2 ,t3 ;a!Ez~h2h1 ,t2t1!Ez~h2h12h2 ,t2t12t2!

3Ez~h2h12h22h3 ,t2t12t22t3!dh1dh2dh3dt1dt2dt3 , ~3!

where

x2,j~h1 ,h2 ,t1 ,t2 ;a!5x jmn~h1 ,h2 ,t1 ,t2!
eE,meE,n

eE,z
2

,

r3,j~h1 ,h2 ,h3 ,t1 ,t2 ,t3 ;a!5r jmnr~h1 ,h2 ,h3 ,t1 ,t2 ,t3!
eE,meE,neE,r

eE,z
3

, j ,n,m,r 5y,z;
d in
in

he

r
o

n

x jmn andr jmnr are the components of the quadratic and
bic susceptibility tensors@4,6,8,25#. en,m5eWn•eWm , eWm are
unit vectors directed along the vectorEW andx,y,z coordinate
axes;n,m5E,x,y,z. EW 5eWEE, Ez5eE,zE. The unit vector
eWE , the direction of polarization of a linearly polarized op
cal wave, is determined~Fig. 1!. Although for convenience
in the equations we are keeping both quantitiesx jmn and
r jmnr , in fact only one of them is not zero, and depending
this we consider it a noncentrosymmetric or Kerr medium

The quantityPW 8 is the resonance nonlinear polarizatio
describing the effects of the one-photon resonance inte
tion of the optical pulse with the optically active impurit
atoms. We shall assume, as is true of a large class of l
crystals~see, for example, Ref.@7#!, that the vector of the
electric dipole momentdW 0 of impurity atoms and the optica
axis O of the uniaxial matrix coincide. In such a system t
-

n

c-

er

theory of self-induced transparency has been constructe
Ref. @27#. Another situation of self-induced transparency

anisotropic media when the vectordW 0 does not coincide with
the optical axis of the crystal was considered in Ref.@28#. In

the present work, we assume that the vectordW 0 and the op-
tical axisO of the matrix coincide and are directed along t

z axis. In such a case the vectorEW and the vector of polar-

ization of the impurity atoms,PW 8, are coupling to each othe
through theirz components@27#. Consequently, we have t
consider the nonlinear wave equation for thez component of

EW (h,t).
Substituting the expressions~2! and ~3! into the wave

equation~1! and employing the condition that the fieldDW be

transverse, divDW 50, we obtain a nonlinear wave equatio

for Ez in the form
8-3
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2c2
]2

]h2E S d~h1!d~ t1!14p cosaFcosax (1)
uu~h1 ,t1!1sinax

'

(1)~h1 ,t1!
eE,y

eE,z
G DEz~h2h1 ,t2t1!dh1dt1

1
]2

]t2E @d~h1!d~ t1!14px (1)
uu~h1 ,t1!#Ez~h2h1 ,t2t1!dh1dt1

524p
]2

]t2E x2,z~h1 ,h2 ,t1 ,t2 ;a!Ez~h2h1 ,t2t1!Ez~h2h12h2 ,t2t12t2!dt1dt2dh1dh2

24p
]2

]t2E r3,z~h1 ,h2 ,h3 ,t1 ,t2 ,t3 ;a!Ez~h2h1 ,t2t1!Ez~h2h12h2 ,t2t12t2!

3Ez~h2h12h22h3 ,t2t12t22t3!dh1dh2dh3dt1dt2dt324p
]2Pz8

]t2

14pc2
]2

]h2 K E @cos2ax2,z~h1 ,h2 ,t1 ,t2 ;a!1cosa sinax2,y~h1 ,h2 ,t1 ,t2 ;a!#

3Ez~h2h1 ,t2t1!Ez~h2h12h2 ,t2t12t2!dt1dt2dh1dh2L
14pc2

]2

]h2 K E @cos2ar3,z~h1 ,h2 ,h3 ,t1 ,t2 ,t3 ;a!1cosa sinar3,y~h1 ,h2 ,h3 ,t1 ,t2 ,t3 ;a!#

3Ez~h2h1 ,t2t1!Ez~h2h12h2 ,t2t12t2!Ez~h2h12h22h3 ,t2t12t22t3!dh1dh2dh3dt1dt2dt3L
14pc2cos2a

]2

]h2
^Pz8&, ~4!
l
f t
m
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s
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he
where we have used the notation^g&5*«'
21(h1 ,t1)g(h

2h1 ,t2t1)dh1dt1 for any functiong.
The dependence of the quantityPz85n0d0s1 on the

strength of the electrical fieldEz is governed by the optica
Bloch equations which are based on the representation o
resonance impurity atoms by an ensemble of two-level ato
whose evolution is caused by processes of interaction w
optical extraordinary waves@16–22#:

]s1

]t
52v0s2 ,

]s2

]t
5v0s11k0Ezs3 ,

]s3

]t
52k0Ezs2 ,

~5!

where k052d0 /\, si(t)5^ŝ i(t)& ( i 51,2,3); here,̂ ŝ i& is
the average value of the Pauli operatorŝ i and v0 is the
frequency of excitation of the two-level impurity atoms. T
take into account that we consider coherent interaction
pulses with two-level atoms—i.e.,T!T1,2—in the system of
equations~5! the relaxation effects are neglected. Since
investigate the situation of a small concentration of impur
atoms~as is true of a large class of crystals with impuritie!,
02660
he
s

th

of

e

the interaction of one impurity atom with another as usua
ignored in the Bloch equations@16–22,27,28#.

We can simplify equations~4! and~5! using the method of
slowly changing profiles. For this purpose, we represent
functionsEz andPz8 in the form

Ez5(
l

ÊlZl , Pz85
n0d0

2 (
l

Zld2 l~d l ,11d l ,21!, ~6!

whereÊ anddl5dl ,11 i ld l ,2 are the slowly varying complex
amplitudes of the optical wave and polarization of the imp
rities, and l runs through the values61,62, . . . ,si
5( ldl ,iZl , Zl5eil (kh2vt) ( i 51,2). To guarantee the realit
of the quantitiesEz and Pz8 , we set Êl5Ê2 l* and dl

5(d2 l)* . We note that such a representation of the solut
of a nonlinear wave equation has been widely used in
theory of nonlinear waves@4,16–22#. This approximation is
based on the consideration that the envelopesÊl anddl ,i vary
sufficiently slowly in space and time as compared with t
carrier wave parts—i.e.,
8-4
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U]Êl

]t
U!vuÊl u, U]Êl

]h
U!kuÊl u, U]dl ,i

]t U!vudl ,i u,

U]dl ,i

]h U!kudl ,i u,

and is called the slowly varying envelope approximation.
On substituting the expansions~6! in the system of non-

linear equations~4! and ~5! we obtain for the envelopes th
nonlinear wave equation

(
l

ZlH FWl~a!Êl2 ia l~a!
]Êl

]h
1 ib l~a!

]Êl

]t
2m l~a!

]2Êl

]h2

2g l~a!
]2Êl

]h]t
2d l~a!

]2Êl

]t2 G2(
l 8

x l ,l 8
(2)

~a!Êl 2 l 8Êl 8

2 (
l 8,l 9

r l ,l 8,l 9
(3)

~a!Êl 2 l 82 l 9Êl 8Êl 92r l~a!~d l ,11d l ,21!J
50 ~7!

and connect with them the system of Bloch equations

]dl

]t
5 i l ~v02v!dl1 i l k0Ê2 ls3 ,

]s3

]t
5

i l k0

2
~dlÊl2d2 l Ê2 l !, ~8!

where

Wl5 l 2~c2k2k l
(2)2v2k l

(1)!,

a l5 l ~c2lk2Al
(2)12kc2k l

(2)2 lv2Al
(1)!,

b l5 l ~c2lk2Bl
(2)22vk l

(1)2 lv2Bl
(1)!,

g l5 l ~2vAl
(1)1 lv2Tl

(1)22c2kBl
(2)2c2lk2Tl

(2)!,

d l5c2l 2k2Dl
(2)2 l 2v2Dl

(1)22lvBl
(1)2k l

(1) ,

m l5c2l 2k2Cl
(2)1c2k l

(2)12c2lkAl
(2)2 l 2v2Cl

(1) ,

Al
( j )5

]k l
( j )

]~ lk !
, Bl

( j )5
]k l

( j )

]~ lv!
, Cl

( j )5
1

2

]2k l
( j )

]~ lk !2
,

Dl
( j )5

1

2

]2k l
( j )

]~ lv!2
, Tl

( j )5
]2k l

( j )

]~ lk !]~ lv!
j 51,2,

r l~a!5Kc l~a!d2 l , c l~a!512
k2c2

v2
cos2a«'

21~ lv,lk !,

k l
(1)5« uu~ lk,lv!,
02660
k l
(2)5E H d~h!d~ t !14p cos2aFx (1)

uu~h,t !

1tanax'
(1)~h,t !

eE,y

eE,z
G J eil (vt2kh)dtdh.

The effective susceptibilities of the second and third orde
uniaxial media forEz have the form

x l ,l 8
(2)

~a!54p l 2v2@c l~a!~xzyyl l
2cot2a1xzzz!

1l lcos2a~xyyz1xyzy!2xyyycota cos2al l
2#,

~9!

r l ,l 8,l 9
(3)

~a!54p l 2v2@c l~a!l l
2cot2a~rzzyy1rzyyz1rzyzy!

1c l~a!rzzzz2c l~a!l l
3rzyyycot3a

1l lcos2a~ryyzz1ryzyz1ryzzy!

1cot2a cos2al l
3ryyyy2cos2a cota~ryyyz

1ryyzy1ryzyy!l l
2#, ~10!

where

l l5
« uu~ lk,lv!

«'~ lk,lv!
, x i jn5x i jn~ lk,lv,l 8k,l 8v!,

r i jnm5r i jnm~ lk,lv,l 8k,l 8v,l 9k,l 9v!, i , j ,n,m5y,z.

It is easy to make sure that all the quantities in Eqs.~7!–~10!
depend on the direction of wave propagation—i.e., from
quantity a. The system of equations~7! and ~8! is for the
slowly varying variables in a sufficiently general form an
can describe various processes of the formation and pr
gation of the nonlinear waves in the anisotropic, nonline
and dispersive media containing small concentrations of
optical active impurity atoms. A lot of effects that were co
sidered earlier can be investigated, as special cases, by
equations. For instance, under the condition whenx l ,l 8

(2) ~or
r l ,l 8,l 9

(3) )!r l we obtain a situation of self-induced transpa
ency in anisotropic media which was considered in Ref.@27#,
but for the situation when conditionx l ,l 8

(2) ~or r l ,l 8,l 9
(3) )@r l is

fulfilled we obtain nonresonance solitons and breath
which were considered in Refs.@4,15#.

In the media with quadratic susceptibility and first-ord
dispersion]2kW /]v25r l ,l 8,l 9

(3)
5r l50, for the direction of syn-

chronism the requirement of phase matching is satisfied
second-harmonic generation is effective@12–14#, if we take
into account the wave equation for theEx component too.

Unlike second-harmonic generation, for other relatio
between phases of the waves it is possible to realize ano
type of interaction: namely, the reactive interaction when
interacting waves do not exchange any energy and under
condition can form ‘‘bright’’ ~for fundamental mode! and
‘‘dark’’ ~for second-harmonic mode! solitons @12# and also
many other nonlinear effects can be investigated by Eqs.~7!
and ~8!.
8-5
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III. OPTICAL BREATHERS OF THE EXTRAORDINARY
WAVES

To further analyze Eqs.~7! and ~8!, we make use of the
perturbative reduction method, developed in Refs.@29,30#,
under the condition

uQ l u!1,

where

Q l~h,t !5k0E
2`

t

Êl~h,t8!dt8

is the area of the optical pulse envelope.
The solution of Eqs.~7! and~8! can be carried out by two

different methods, depending on whether we investigate
problem of the evolution of the initial perturbation~initial-
value problem! or we consider the propagation in the m
dium of a pulse, which is specified on the boundary of
medium ~boundary-value problem!. Although the corre-
sponding equations appear different, we must note tha
some sense they are identical to each other.

In the case of an initial-value problem,Êl can be repre-
sented as@29,30#

Êl~h,t !5 (
a51

`

(
n52`

1`

« (a)Ynw l ,n
(a)~z,t!, ~11!

where Yn5ein(Qh2Vt), z5«Q(h2vt), t5«2t, v
5dV/dQ, and« is a small parameter.

In the case of a boundary-value problem, we can repre
the quantityÊl as

Êl~h,t !5 (
a51

1`

(
n52`

1`

« (a)Xnf l ,n
(a)~j,n!, ~12!

where Xn5ein(Q̃h2Ṽt), j5«(t2h/U), n5«2h, and U

5(dQ̃/dṼ)21. Such a representation allows us to separ
from Êl the still more slowly changing quantitiesw l ,n

(a) and
f l ,n

(a) . Consequently, it is assumed that the quantitiesV, Q,

Q̃, Q̃, w l ,n
(a) , and f l ,n

(a) satisfy the inequalities

v@V, k@Q, v@Ṽ, k@Q̃,

U]w l ,n
(a)

]t
U!Vuw l ,n

(a)u, U]w l ,n
(a)

]h U!Quw l ,n
(a)u,

U] f l ,n
(a)

]t
U!Ṽu f l ,n

(a)u, U] f l ,n
(a)

]h U!Q̃u f l ,n
(a)u.

In the interaction of an optical pulse with a resonantly a
sorbing medium, the most significant effects are usually
served at exact resonance. Therefore, for simplicity, we c
sider the system of Bloch equations~8! at exact resonance—
i.e., with v5v0.
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For the determination of the explicit form of the quanti
Pz8 , we expanddl and s3 in a perturbation-theory series i
the small nonlinearity parametere:

dl5 (
a51

« (a)bl
(a), s35 (

a50
«

(a)
N(a).

Substituting these expansions and expression~11! into Eqs.
~8!, we obtain

r l~a!5(
n

Yn

l

n H Rl~a! (
a51

«aw l ,n
(a)

2«3Rl ,0~a!w l ,n2n82m
(1) w l ,n8

(1) w2 l ,m
(1) J 1O~«4!.

~13!

Analogously we can obtain an expression forPz8 in the case
of the boundary-value problem using Eq.~12!:

r l~a!5(
n

Xn

l

n H Rl~a! (
a51

«a f l ,n
(a)

2«3Rl ,0~a! f l ,n2n82m
(1) f l ,n8

(1) f 2 l ,m
(1) J 1O~«4!,

~14!

where

Rl~a!5
4pn0d0

2v2t0

\V
c l~a!,

Rl ,0~a!5
8pn0d0

4v2t0

~\V!3
c l~a!. ~15!

The plus sign of the quantityt0 corresponds to the initia
condition in which the impurity atoms are initially in th
ground state—i.e., att→`,s3521 ~attenuating medium!.
The minus sign corresponds to the case where, att→`,s3
511; i.e., all the impurity atoms are initially in the excite
state~amplifying medium!. From Eqs.~13! and ~14! we can
see that the resonance nonlinear polarizationPz8 or r l for
one-photon processes contains not only nonlinear but lin
parts too.

A. Initial-value problem

We begin by considering the solution of Eqs.~7! and ~8!
in case of an initial-value problem. In this analysis we u
the expansion~11!. On substituting Eqs.~11! and ~13! into
Eq. ~7!, we obtain the nonlinear wave equation
8-6
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(
a,l ,n

«aZlYnH FWl ,n1«Jl ,n

]

]z
1«2Hl ,n

]2

]z2
1«2hl ,n

]

]tGw l ,n
(a)

2 (
a8,l 8,n8a9,l 9,n9

«a8@Fl ,l 8w l 2 l 8,n2n8
(a) w l 8,n8

(a8)

2«a9l l ,l 8,l 9w l 2 l 82 l 9,n2n82n9
(a) w l 8,n8

(a8) w l 9,n9
(a9)

#J
1(

l ,n
ZlYn

l

n
~d l ,11d l ,21!FRl (

a51
«aw l ,n

(a)

2«3Rl ,0w l ,n2n82m
(1) w l ,n8

(1) w2 l ,m
(1) 1O~«4!G50, ~16!

where the coefficients

Wl ,n5Wl1a lnQ1b lnV2g ln
2QV1m ln

2Q21d ln
2V2,

Jl ,n52 iQ@a l1b lvg12nQm l12nd lVvg

2g ln~V1Qvg!#,

Hl ,n5Q2~g lvg2m l2d lvg
2!,

hl ,n5 i ~b l12nVd l2nQg l !,

Fl ,l 854p l 2v2x l ,l 8
(2) ,

l l ,l 8,l 954p l 2v2r l ,l 8,l 9
(3) , ~17!

depending ona. To determine the values ofw l ,n
(a) we equate

to zero the terms corresponding to like powers of«. As a
result, we obtain a chain of equations: to first order in«,

FWl ,n~a!1
l

n
Rl~a!Gw l ,n

(1)50. ~18!

In dispersive mediaW05W6150 andWu l u.1Þ0. The equa-
tion Wl 56150 provides the dispersion law for extraordina
waves. In what follows, we shall also be interested in
breather which vanishes att→6`. Consequently, accordin
02660
a

to Eq.~18!, only the following terms of all the quantitiesw l ,n
(1)

differ from zero: w61,61
(1) or w61,71

(1) . The relation between
the quantitiesV andQ, for fixed values ofl andn561, is
determined from Eq.~18!:

a lnQ1b lnV2g lQV1m lQ
21d lV

21Rl

l

n
50. ~19!

Since all the coefficients in this equation are functions ofa,
the relation betweenV and Q will depend on the anglea,
too.

We have to consider the situation whenw61,61
(1) 50 and

w61,71
(1) Þ0 separately from the situation whenw61,61

(1) Þ0
and w61,71

(1) 50. First we consider the situation whe
w61,61

(1) 50 andw61,71
(1) Þ0. Then the relation betweenV and

Q is determined from Eq.~20! at l 52n561.
Substituting Eq.~19! into Eq. ~17!, we easily see that the

following relation holds:J61,7150.
To second order in«, from Eq.~16! we obtain the relation

betweenw62,72
(2) andw61,71

(1) :

w62,72
(2) 5

F62,61

w62,72
~w61,71

(1) !2. ~20!

Substituting Eqs.~19! and ~20! into Eq. ~16!, we obtain the
well-known nonlinear Schro¨dinger equation~NSE! for the
quantityC l ,2 l5«Aqlw l ,2 l

(1) ~for l 561):

i l
]c l ,2 l

]t
1

]2c l ,2 l

]yl
2

1uc l ,2 l u2c l ,2 l50, ~21!

where

yl5
h2vgt

Apl

, pl5
i lH l ,2 l

hl ,2 lQ
2

52
1

2

]2V

]Q2
,

ql5
ml2Rl ,0

2Vd l2 lb l2Qg l
.

The quantityql contains terms coming from the resonan
Rl ,0 and nonresonanceml nonlinear terms, where the quan
tity
ml5Ml5
16p2v4~x l ,2 l

(2) 1x l ,2l
(2)!x2l ,l

(2)

W2l22la lQ22lb lV24g lQV14d lV
214m lQ

22
1

2
~\V/d0!2R2l ,0

for quadratic nonlinearity crystals and

ml5Ll54pv2~r l ,l ,2 l
(3) 1r l ,2 l ,l

(3) !

for crystals with cubic nonlinearity.
The NSE~21! under the conditionplql.0 has the soliton solution

c l ,2 l52i l h0

e2 i l w1,l

cosh 2h0w2,l
, ~22!

where
8-7
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w1,l5
2j0h

Apl

12F2~j0
22h0

2!2
j0vg

Apl
G t2w0 ,

w2,l5
h

Apl

1S 4j02
vg

Apl
D t2y0 . ~23!

The quantitiesj0 ,h0 ,w0, andy0 denote the scattering dat
of the inverse scattering transform~IST! @1,30,31# when ap-
plied to the nonlinear equation. Substituting the soliton so
tion for the superenvelope, Eq.~22!, into Eq.~11!, we obtain
for the envelopeÊl the breather solution@1–3,15,30–32#

Êl5
2i l h0

Aql

e2 i l (w1,l1Vt2Qh)

cosh 2h0w2,l
. ~24!

Using the IST, we can obtain the breather solution~24! for
any initial valueÊ(t50,h). The appearance in expressio
~24! of the factoreil (Qh2Vt) indicates the formation of peri
odic beats~slow in comparison with coordinates and tim
with characteristic parametersV andQ), as a result of which
the soliton solution~22! for c l ,2 l is transformed into the
solution~24! for complex envelopeÊl . This is exact regular
time ~and/or space! periodic solution of the nonlinear wav
equation~7! called a breather~pulsing soliton! which loses
no energy in the process of propagation through the med
@1–3,30–32#. Equation~24! is a breather under the conditio
of phase modulation (w1,lÞ0). From Eqs.~9!, ~10!, ~15!,
~19!, ~23!, and ~24! we can see that all parameters of t
breather depend on the direction of the wave propagatio

A situation similar to Eq.~7! occurs with the sine-Gordon
equation; namely, the breather for a small amplitude of
sine-Gordon equation corresponds to the soliton of the N
~see, for example,@1–3,32#!. Indeed, if we consider the cas
when there is no phase modulation (w1,l50), then the com-
plex quantity Êl reduces to the real quantity Re (Êl) and
expression~24! goes over to the more usual form of a sma
amplitude breather which is proportional to sin(Vt
2Qh)sech 2h0w2,l @1–3,32#. At the same time, we have t
note that Eq.~24! is a breather solution of Eq.~7!, but is not
a breather solution of the NSE@unlike Eq. ~24!, because
breather solutions of the NSE are unstable@30,31##.

In the case whenw61,61
(1) Þ0 andw61,71

(1) 50, the relation
betweenV and Q is determined from Eq.~19! at l 5n
561. Expressions~21!–~24! are valid in this case also if we
make the changes

c l ,2 l→«AQ61w61,61
(1) , pl→

i lH l ,l

hl ,lQ
2

,

ql→
M̃ l1Ll1Rl ,0

i lh l ,l
, M̃ l5~Fl ,2 l1Fl ,2l !

F2l ,l

w2l ,2l
.

B. Boundary-value problem

Here we consider the same problem in case o
boundary-value problem. In this case, we use expansio
02660
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e
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Eq. ~12! for the solution of Eqs.~7! and~8!. On substituting
Eqs.~12! and~14! into Eq.~7!, as was done in the precedin
section, we obtain the NSE in the form

i l
]x l ,2 l

]h
1

]2x l ,2 l

]Tl
2

1ux l ,2 l u2x l ,2 l50, l 561, ~25!

where

x l ,2 l~h,Tl !5«Aq̃l f l ,2 l
(1) , l 52n561, Tl5

t2
h

U

Ap̃l

,

p̃l5
i lH l ,2 l

(0)

hl ,2 l
(0)

, q̃l5
Ml ,2 l1Ll ,2 l2Rl ,0

i lh l ,2 l
(0)

,

Hl ,n
(0)52

1

U2
~m l2g lU1d lU

2!,

hl ,n
(0)52 i ~a l2g lnṼ12nm l Q̃!. ~26!

In this case, the relation between the quantitiesṼ andQ̃, at
fixed values ofl andn, has the form~at l 561)

a lnQ̃1b lnṼ1m l Q̃
21d lṼ

22g l Q̃Ṽ1Rl

l

n
50. ~27!

Substituting the solution of NSE~25! into Eq. ~12!, we
can obtain the breather solution of Eq.~7! in the form

Êl5
2i l h0

Aq̃l

e2 i l (d1l
1Ṽt2Q̃z)

cosh 2h0d2l

, ~28!

where

d1l
5

2j0

Ap̃l

t1F4~j0
22h0

2!2
2j0

Ap̃lU
Gh2w0 ,

d2l
5

t

Ap̃l

1S 4j02
1

UAp̃l
D h2y0 . ~29!

Using the IST, we can obtain the breather solution~28! of
Eqs. ~7! and ~8! for any boundary value of the quantit
Ê(t,h50).

Under the conditionl 5n561 expressions~26!–~29! are
valid in this case also if we make the changes

x l ,2 l→«AQ̃l f l ,l
(1) , p̃l→

i lH l ,l
(0)

hl ,l
(0)

, q̃l→
Ml1Ll2Rl ,0

i lh l ,l
(0)

.

IV. STRUCTURE OF THE BREATHER ZONE

In the present paper we have shown that in the propa
tion of intense optical radiation through~quadratic or cubic!
nonlinear and second-order~spatially and/or temporally! dis-
8-8
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persion (]2kW /]v2Þ0) anisotropic uniaxial crystals contain
ing small concentrations of optical resonance impurity ato
optical breathers can arise. The explicit form of the breat
when we consider the initial-value problem, is given by E
~24!, and if we investigate the boundary-value problem,
form of the breather is given by expression~28!. The disper-

sion equation and the relation betweenV andQ (Ṽ andQ̃)
are given byW6150 and Eq.~19! @and Eq.~27!#.

The physical interpretation of the formation of a breath
is the following. In the propagation of the pulse in a disp
sive medium, its shape will not remain unchanged. T
width of the pulse will increase during propagation. This
due to the fact that waves of different wavelength propag
in a dispersive wave with different velocities. In the NS
this effect is taken into account through the term
]2c l ,2 l /]yl

2 and]2x l ,2 l /]Tl
2 . On the other hand, the effec

of nonlinearity lead to a progressive deformation of the p
file of the pulse, which increases with increasingt. In the
NSE, the nonlinear effects are taken into account by
termsc l ,2 l uc l ,2 l u2 andux l ,2 l u2x l ,2 l . As a result of the com-
petition between the~nonresonance and/or resonance! non-
linearity, which increases the curvature of the profile of t
pulse, and the dispersion, which causes the profile to sp
out, the shape of the nonlinear wave is stabilized—an opt
breather state is formed.

It should be noted that these results and their interpr
tion are applicable to pulses with sufficiently smooth en
lopes, under the condition that the size of the pulse be la
in comparison with the wavelength—i.e.,kL@1, whereL is
the length of the breather. Moreover, the length of
breather should be significantly greater than the charact
tic length of the periodic beats,LQ@1 (LQ̃@1).

We considered the case of exact resonancev5v0 and
homogeneous broadening of the spectral line. Extensio
the casevÞv0 and inhomogeneous broadening of the sp
tral line do not present difficulties. It is obvious that in th
case we should not expect qualitatively new results co
pared to those given above.

We note that the NSE contains not only one-soliton~23!,
but alsoN-soliton solutions with a more complicated beha
ior. In particular, for many-soliton solutions of the NSE the
are characteristic oscillations of the envelope and str
compression of the pulse peaks already in the initial stag
propagation of the wave. Under these conditions, we can
always use the slowly varying envelope approximation~6!

and still less Eqs.~11! and~12! ~the separation fromÊl of the
more slowly varyingsw l ,n

(a) and f l ,n
(a)). Therefore, the schem

presented above is not valid for such solutions, and for th
completely different method is needed~see, for example
@5#!.

The stability of the breathers solutions~24! and ~28! is
connected with the stability of the sech-soliton solutions
the NSE which have been investigated in detail. It is w
known that the soliton solutions of the NSE are highly sta
@1,30,31#. Taking into account that the effects of anisotro
do not stimulate any specific instability, special considerat
of the stability of the breathers of Eqs.~7! and ~8! in aniso-
tropic media is not required.
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The NSE is the fundamental equation to describe solit
waves, which occur when dispersion is balanced by non
earity, when both group velocity dispersion and nonlinear
play an important role simultaneously. The condition for t
existence of the soliton of the NSE is

T2ql uÊl~0,0!u25
]2k

]v2
,

where the quantityuÊl(0,0)u2 is proportional to an input
power of the soliton. An analogous relation for the quant
ql̃ is valid, too. The input power of the soliton necessary
the excitation of the soliton by means of the quanti
]2k/]v2—i.e., from the dispersion propertiesk(v) of the
medium—is determined. The experimental study of solito
described by means of the NSE@33# in an AlGaAs sample is
reported in Ref.@34#. In these experiments for the soliton
the maximum total power of the pulse inside the sample w
maintained at 500–600 W.

Without phase-matching conditions no accumulation
nonresonance nonlinearity along the optical path occurs
order to get the evident nonlinear effect, a very high pow
of radiation is necessary. When the phase-matching cond
is not fulfilled exactly the efficiency of the cascaded nonl
earities is low and for the realization of the soliton regime
propagation a high-power pulse has to be used@35#. Such
solitary waves have been observed experimentally
potassium-titaynl-posphate and in a LiNbO3 uniaxial crystal
@36#.

We have to note that the input power~intensity! of the
waves varies very strongly in different nonlinear optical e
periments. For instance, for the excitation of the resona
solitons in ruby, the pulse intensity is of order 100 W/cm2

@16#, but for parametric amplification of the waves in th
crystal LiNbO3 an input intensity of 53106 W/cm2 is used
@6#. Single-soliton formation in potassium-titanyl-phospha
has been observed in Ref.@37#, with peak intensity thresh-
olds of about 3 GW/cm2. Multiple-soliton generation
mediated by the amplification of asymmetries, with an inp
peak intensity 23 GW/cm2 has been recently observed
Ref. @38#.

For the breathers the situation is different. The input
tensity for breather generationI br is proportional to the
quantity ]2V/]Q2 ~or ]2Ṽ/]Q̃2) and it can be determined
from the relation~19! for V andQ @or relation~27! for Ṽ and
Q̃] The quantitiesV andQ (Ṽ andQ̃) characterize ‘‘internal
properties’’ of the breather. Unlike solitons, the intensity
excitation of the breather is determined not only by the d
persive properties of the medium, but also by the inter
parameters of the breather, the direction of wave propa
tion, and the symmetry of the medium.

We can make estimations of the optimal laser powerPbr
for nonresonance breather generation@breather zone~BZ! I#.
For example, let us take typical numerical values for opti
media and radiation parameters necessary for realiza
of the breather regime: v5331014 Hz, nuu(v)
51.462 234,n'(v)51.498 931, a5p/12, T53 ns, and
v/V533102, wherePbr5I brA, nuu andn' are components
8-9
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G. T. ADAMASHVILI PHYSICAL REVIEW E 69, 026608 ~2004!
of the tensor of the refractive index at frequencyv, andA is
the cross-sectional area of the medium, at this]2V/]Q2

510217 s2/cm. In the Kerr medium the total index of re
fraction has an additional termn8I proportional to the lase
intensity I. Using these estimations, forn8;10210 m2/W,
we obtain the minimum power for nonresonance breat
generation,Pbr;520 W, in the cubic medium. The powe
for breather generation in a noncentrosymmetric mediu
Pbr;350 W, when the effective susceptibility isxe f f

2

;5310223 (m/V)2 and the values of the other paramete
of the pulse and medium are the same as above. These
mations for the ‘‘blended’’ breathers~BZ II ! are valid, too.
All these estimations are based on the assumption that
simplicity, the medium has temporal dispersion, cross sec
A51024 cm2, and the direction of the wave propagatio
does not coincide with the direction of synchronism.

Because numerical values of the nonlinear susceptibili
can vary very strongly in different media, in different solid
the minimum intensity for nonresonance breather genera
will be different, too. It is clear that usually the minimum
intensity for resonance breather generation is smaller t
the minimum intensity for nonresonance or ‘‘blende
breather generation because in the BZ III alwaysRl ,0@ml .

In the general case, in a uniaxial nonlinear medium or
nary and extraordinary optical waves can propagate simu
neously, which are connected to each other by means of
resonance susceptibililties when componentsxxi jÞ0 and
rxi jkÞ0, where i , j ,k5x,y,z. Independent of the kind o
initial ~or boundary! polarizations of the waves, during th
process of propagation elliptical polarized waves will ari
because allx, y, andz components of the vectorEW will be
excited. This statement is valid when the direction of t
propagation of the waves coincides or is very close to
direction of syncronizm and phase-matching conditions
fulfilled. Under this condition the effect of second-harmon
generation is realized and an intensive exchange of ene
between different modes takes place.

But the situation will be different when the soliton o
breather regime of the propagation of the waves is satisfi
In the general case, their group and phase velocities are
ferent and the phase-matching condition is not fulfilled. U
der this condition the interaction between different mod
has the character of the mechanism of cooperative self-ac
and a reactive interaction between waves takes place@12#.
During propagation the breathers~solitons! do not exchange
energies between different modes and their amplitudes
not changed. The polarization of the breather depends on
initial ~or boundary! polarization of the wave. If the polar
ization was elliptical at the begining, then breathers app
for ordinary as well as for extraordinary waves. These wa
will be propagating without energy exchange.

In the present work a special case is considered, w
initially ~or at the boundary! the waves are linearly polarize
and lying in theyz plane. Consequently, during propagati
of the waves only extraordinary waves, for whichEW has only
two nonzero componentsEy andEz , will exist. An ordinary
wave, for which the quantityEx is not zero, will not be
excited independently of the components of the nonlin
02660
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susceptibilities containing allx,y,z indexes thatxxi jÞ0 and
rxi jkÞ0, where (i , j ,k5x,y,z). It is because in the breathe
regime of propagation, different modes realize reactive in
actions without a mutual exchange of energy@12#; i.e., the
extraordinary waves do not exchange their energy with
ordinary waves. If the ordinary wave is not excited at t
begining of a wave excitation, the breather of the extraor
nary wave does not provide excitation energy for ordina
waves.

Of course we have neglected all transition processes
assumed that the medium is entered by the pulse alread
the form of the breather. Hence we are considering breat
which are always linearly polarized, lying in they,z plane,
and do not become elliptically polarized waves.

Therefore Eq.~3! is valid under the condition when th
extraordinary wave does not excite ordinary waves and thx

component ofEW is equal to zero. Consequently, elliptical
polarized waves do not arise and we consider the situation

means of Eq.~3! when vectorEW is always lying in theyz
plane.

Problems of the rotation of the plane of the polarizati
and conditions for the generation of elliptically polarize
states for solitary optical waves are considered in detai
Ref. @39#.

The quantityql (q̃l) contains terms coming both from th
resonanceRl ,0 and nonresonanceml nonlinear terms. De-
pending on the values of these quantities, different mec
nisms of the formation of optical breathers can take plac

~a! ml5Rl ,0 and mlRl ,0,0. This is the condition of the
realization of the blended MFB when both the nonresona
and resonance nonlinearities are simultaneously effective
act together with the dispersion in the process of the form
tion of resonance optical breathers of the small area.

~b! ml!Rl ,0 . The pulse interaction with optical impuritie
has nonlinear character and nonresonance interactions a
nored. This situation corresponds to the self-induced tra
parency and resonance optical breathers of the small
@2,3#.

~c! ml@Rl ,0 . The pulse interaction with optical impuritie
has linear character and does not contribute to the forma
of the nonresonance breathers except for a renormalizatio
their parameters@15#. In particular, in Eqs.~20! and ~28!

which determine the connection betweenV andQ ~or Ṽ and
Q̃) we should substituteRl ,050 ~see@15#!.

From expressions~9!, ~10!, and ~15! it is clear that the
quantitiesml and Rl ,0 depend not only differently on the
direction of wave propagation, but also essentially on
symmetry of the medium. Hence the mechanisms of the
mation of the optical breathers of extraordinary wav
which are determined by means of the quantitiesml and
Rl ,0 , will depend both on the direction of propagation of th
pulses and on the symmetry of the medium. Thus we exp
that several wave propagation directions exist in uniax
crystals at which different mechanisms@~a!, ~b!, and ~c!# of
the formation of the optical breathers are effectively contr
uting. In order to find these directions we have to analyze
symmetry of the media.
8-10
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First we consider~noncentrosymmetric! media with qua-
dratic nonlinearity in the angle interval@0,p/2#. Fora50, the
quantityEz vanishes and hence for this direction expressi
~9! and ~10! are not determined@we can consider the wav
equation~1! for the anothery component of the vectorEW and
instead of Eqs.~9! and ~10! use analogous expressions f
Ey]. For this directionc l(0)5R0,l(0)50. Therefore along
the z axis and fora close to zeroEz is very small and for
these directions no breathers exist~Fig. 2!. With increasinga
the quantitiesEz , c l(a), andR0,l(a) start also to increase
In this region the quantityx l ,l 8

(2) Þ0 for all classes of the trigo
nal, tetragonal, and hexagonal crystal systems except fo
crystal classes~CC’s! 32, 422,42m, and 622 for which all
considered components of the quantityx l ,l 8

(2) equal zero@13#.
When the quantityRl ,0 is very small, then the influence o
the impurities on the wave processes is very small too
hence they do not contribute to the process of the forma
of breathers. In this region we thus expect only nonresona
breathers to be excited, independent of the symmetry of
medium ~except CC’s 32, 422,42m, and 622!. The corre-
sponding direction is determined using the condition that
dispersion length equal the nonlinear length@13,15#. In this
direction the~c! MFB is strongly enhanced.

For a5p/2 the quantityc l(p/2)51, and hence the quan
tity Rl ,0(p/2) takes its maximum possible value. Under th
condition the phenomenon of the self-induced transpare
@MFB ~b!# is the most effective one and resonance opti
breathers of the small area are formed. When the quantia
is deflected fromp/2 but still is very close top/2, the quan-
tity Rl ,0 is also very close to its maximum value. Cons
quently the nonlinear interaction of the optical pulse w
impurities is still dominant. From Eq.~9! we can see tha
depending on the symmetry of the crystals the quan
x l ,l 8

(2) ~a→p/2! takes different values. For the CC’s 4,̄ 6̄, and

6̄m2 of the tetragonal and hexagonal crystal syste
x l ,l 8

(2) ~a→p/2!50 and only MFB~b! will be effective, but for
the CC’s 3, 3m, 4, 4mm, 6, and 6mmof the trigonal, tetrag-
onal, and hexagonal crystal systems the quan
x l ,l 8

(2) ~a→p/2!Þ0 and depending on the ratioml /Rl ,0 either
~b! or ~a! MFB will be realized.

FIG. 2. Three different chosen directionsB1 , B2, andB3 shown
as dashed lines. The BZ correspond to the hatched regions. In
FZ the MFB is suppressed.
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The third important direction isaa where the mechanism
~a! of the formation of the resonance optical breathers of
small area is realized. It is obtained from the equationMl

5Rl ,0 with the conditionMlRl ,0,0.
Thus in crystals with quadratic nonlinearity in the gene

case we have three chosen directionsB1 , B2, andB3 ~except
crystals with CC’s 32, 422,42m, and 622!. While the direc-
tions B1 andB2 make anglesac andaa with the opticalO
axis, theB3 direction coincides with they axis. In Fig. 2
these directions are shown by dashed lines. Breather z
~BZ’s! correspond to the hatched regions around these di
tions where one of the MFB will be most effective. There a
forbidden zones~FZ’s! located between the BZ’s where th
MFB are not or only weakly effective.

In the general case the number of chosen directions
pends on the symmetry of the crystals. Analyzing express
~9!, we can separate all quadratic uniaxial crystals into
three groups: The first group~G1! contains the crystals with
the CC’s 4̄, 6̄, and 6̄m2 of the uniaxial tetragonal and hex
agonal crystal systems; the second group~G2! contains the
crystals with the CC’s 3, 3m, 4, 4mm, 6, and 6mm of the
trigonal, tetragonal, and hexagonal crystal systems; and
third group~G3! contains the crystals with the CC’s 32, 42
42m, and 622 of the trigonal, tetragonal, and hexagonal cr
tal systems.

The situation considered in Fig. 2 corresponds to the
taking into account that for this group of crysta
x l ,l 8

(2) ~a→p/2!50. To investigate the dependence of mech
nisms of the formation of breathers on the direction of t
wave propagation it will be more convenient if we consid
the single BZ~SBZ! in Fig 3.

Unlike the G1, the G2 of the crystals realizes another S
~see Fig 3, G2!. In particular, for the G2 the quantity
x l ,l 8

(2) ~a→p/2!Þ0 and consequently in zone III the directio
B38 and the angleaa8 appear which are defined through th
equationMl5Rl ,0 ~but for a different valuex l ,l 8

(2) ;xzzz than
in zone II!. In zones II and III resonance optical breathe
will be formed by means of mechanism~a! but breather pa-
rameters in zones II and III will be different.

For the G3 of the crystals the situation is quite different
compared to G1 and G2~see Fig. 3!. In this case all compo-

the

FIG. 3. Three different SBZ realizations for the G1, G2, and
of crystals with quadratic nonlinearity. For crystals with cubic no
linearity the SBZ coincides with the SBZ of G2 of the quadra
nonlinearity crystals. The optical breathers of the small area
formed in the zones I, II, and III~BZ! by means of three differen
~a!, ~b!, and ~c! mechanisms as shown in the figures. These zo
are hatched. The width of the zones depends on the nonline
parameters.
8-11
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G. T. ADAMASHVILI PHYSICAL REVIEW E 69, 026608 ~2004!
nents of the quantityx l ,l 8
(2) equal zero and consequentlyMl

50 everywhere and we have only one special directionB3
which points along they axis. The quantityRl ,0(p/2) has a
maximum value in this direction, meaning that in this sing
BZ the ~b! MFB ~i.e., self-induced transparency! will be re-
alized. Note that we have ignored the influence of the w
cubic nonlinearity in order to study the SBZ in crystals w
quadratic nonlinearity.

From Eq. ~10! it follows that all uniaxial crystals with
cubic nonlinearity~Kerr media! have the same chosen dire
tions and SBZ as those of the crystals of G2 with quadr
nonlinearity and hence Fig. 2. G2 applies for crystals w
cubic nonlinearity as well.

Note that mechanisms~b! and ~c! do not act indepen-
dently but also influence each other. They can support e
other under the condition of~a! MFB but in other cases whe
ml2Rl ,050—for example, in amplifier media a
t0,0—mechanism~a! is not realized and consequently th
SBZ will be changed significantly: BZ II in Fig. 3, G1, and
and III in Fig. 3, G2, will be transformed to the FZ where n
breathers exist.
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Consequently in the anisotropic uniaxial media thr
mechanisms@~a!, ~b!, and ~c!# of the formation of optical
breathers can be realized for different directions of the
traordinary wave propagation depending on the symmetr
the medium. The uniaxial crystals with quadratic nonline
ity can be divided into three different groups with each
them having its own SBZ. The SBZ within one of the
groups does not depend on the crystal systems~syngonies or
point groups! and is determined by means of the CC. Unli
quadratic media for uniaxial crystals with cubic nonlinear
the SBZ depends neither on the crystal systems nor on
CC and one single SBZ is realized which coincides with
SBZ of the G2 of crystals with quadratic nonlinearity. Hen
the mechanisms of the formation of breathers depend on
direction of pulse propagation and this dependence is qu
tatively different for media with quadratic and cubic susce
tibilities.
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